4.7 Article

Formaldehyde: Another hormesis-inducing chemical

期刊

ENVIRONMENTAL RESEARCH
卷 199, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.111395

关键词

Chemical toxicology; Dose-response relationship; Environmental pollution; Formaldehyde; Hormesis; Ecological risk assessment

资金

  1. Startup Foundation for Introducing Talent of Nanjing University of Information Science AMP
  2. Technology (NUIST) , Nanjing, China [003080]
  3. U.S. Air Force [AFOSR FA9550-13-1-0047]
  4. ExxonMobil Foundation [S18200000000256]

向作者/读者索取更多资源

Formaldehyde is a naturally-occurring compound with potential health effects. Recent studies suggest that formaldehyde commonly induces hormesis, affecting growth, metabolism, and cell division activities in living organisms.
Formaldehyde (FA) is a naturally-occurring compound, produced endogenously in diverse living organisms. It also occurs widely in the environment due to anthropogenic (e.g. used as a chemical intermediate) and natural sources (e.g. a component of the volatile organic compounds blends emitted by plants). While FA is considered a potential carcinogen, living organisms have the ability to cope with FA, and some minimum endogenous levels of FA may be required for health. Recently, genetic engineering approaches transferring biological information from one organism to another led to increased assimilation of and conferred genetic-based tolerance to FA in plants-microorganisms systems. Here, we propose that FA commonly induces hormesis, a hypothesis that we confirm by collating evidence from various published studies with animals, plants, and microorganisms. The stimulation by low doses below the no-observed-adverse-effect-level (NOAEL) was modest in magnitude, in agreement with the general hormesis literature. In plants, among the endpoints showing hormesis were growth, lipid peroxidation, and photosynthetic pigments. In various animal cells, hormesis was observed in cell proliferation and viability, responses that were related to mechanisms, such as activation of phosphorylated ERK (extra-cellular signaling-regulated kinase) expression, acceleration of the process of cell division, and enhancement of the Warburg effect (i.e. use of glycolysis by tumor cells to produce energy for rapid growth). Hormetic in vitro responses were reported in several cancerous/tumorous cell lines, suggesting that FA has the potential to influence tumor promotion within a specific concentration range and biological context. These observations suggest that FA commonly acts in an hormetic manner with implications for study designs across a broad range of biological models and in the assessment of environmental and human risks associated with FA exposures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据