4.8 Article

Foetal 25-hydroxyvitamin D moderates the association of prenatal air pollution exposure with foetal glucolipid metabolism disorder and systemic inflammatory responses

期刊

ENVIRONMENT INTERNATIONAL
卷 151, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2021.106460

关键词

Prenatal air pollution; Cord blood biomarkers; Prospective cohort study

资金

  1. National Natural Science Foundation of China [81872631,81472991]
  2. Provincial Foundation for Excellent Young Talents of Colleges and Universities of Anhui Province [gxyqZD2018025]
  3. Project of Academic and Technical Leaders of Anhui Province [2017H141]

向作者/读者索取更多资源

The study suggests that prenatal air pollution exposure may lead to fetal glucolipid metabolism disorders, while high fetal 25(OH)D levels could improve fetal systemic inflammation and glucolipid metabolism at low-medium levels of prenatal air pollution exposure.
Background: Previous studies have indicated that systemic inflammation may play an important role in the association between air pollution exposure and glucolipid metabolism disorders, and vitamin D supplementation was beneficial in improving systemic inflammation and glucolipid metabolism. However, the role of foetal 25-hydroxyvitamin D (25(OH)D) and high-sensitivity C-reactive protein (hs-CRP) in the association between prenatal air pollution exposure and foetal glucolipid metabolism disorders is still not clear. Objective: To verify whether foetal 25(OH)D can improve glucolipid metabolism disorders induced by prenatal air pollution exposure by inhibiting the systemic inflammation. Methods: A total of 2,754 mother-newborn pairs were enrolled from three hospitals in Hefei city, China, between 2015 and 2019. We obtained air pollutants (PM2.5, PM10, SO2, CO, and NO2) data from the Hefei City Ecology and Environment Bureau. Cord blood biomarkers (25(OH)D, hs-CRP, C-peptide, HDL-C, LDL-C, TC, and TG) were measured. Results: We found that prenatal air pollution exposure was positively associated with foetal glucolipid metabolic index levels after adjusting for confounders. Additionally, an IQR increase in exposure to PM2.5, PM10, SO2, and CO was associated with 20.0% (95% confidence interval (CI): 16.9, 23.6), 20.1% (16.8, 23.3), 22.9% (20.6, 25.3), and 16.7% (14.4, 19.0) higher cord blood hs-CRP levels, respectively, and an SD increase in hs-CRP was associated with 1.4% (0.1, 2.8), 2.2% (1.6, 2.9), 1.4% (0.9, 2.0), and 3.9% (2.8, 4.9) higher C-peptide, LDL-C, TC, and TG levels in the cord blood, respectively. However, there was a monotonic decrease in beta s between cord blood 25(OH)D and biomarkers (P for trend < 0.001). Furthermore, mediation analysis revealed that the association between air pollution exposure and foetal glucolipid metabolic indexes mediated by hs-CRP and 25(OH)D was 19.35%. In stratified analyses, the significant negative association between cord blood 25(OH)D with foetal hs-CRP and glucolipid metabolic indexes was observed only at low-medium levels of air pollution exposure. Conclusions: Prenatal air pollution exposure could damage foetal glucolipid metabolic function through systemic inflammation. High foetal 25(OH)D levels may improve foetal systemic inflammation and glucolipid metabolism at low-medium levels of prenatal air pollution exposure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据