4.7 Review

A review on phase-field modeling of hydraulic fracturing

期刊

ENGINEERING FRACTURE MECHANICS
卷 253, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2021.107881

关键词

Hydraulic fracturing review; Phase-field modeling; Porous media fracture; Desiccation cracking; Crack aperture width; Flow in the crack; Crack driving force

向作者/读者索取更多资源

This paper reviews the significant scientific works utilizing PFM to model hydraulic fracturing since 2012, covering different phase-field evolution formulations, stiffness degradation functions, crack driving forces, and methods for estimating crack aperture width. It also discusses various numerical approaches and implementations, concluding with open topics and challenges for future research.
Motivated by the successful implementation of the phase-field method (PFM) to simulate complicated fracture patterns at moderate computational costs in solid materials, many research groups have started since 2012 applying the PFM to model hydraulic fracturing, especially that occurs in porous geomaterials. These research works have contributed to the development of the PFM from different perspectives, especially in connection with the mathematical formulations of the hydro-mechanical processes and the numerical algorithms to solve the emerging coupled problems. In this regard, the underlying paper aims to review the significant scientific works that utilized the PFM to model fracturing caused mainly by fluid injection in a certain porous domain and, less common, by fluid extraction (e.g., drying) from a certain porous domain. This includes reviewing different approaches for deriving the phase-field evolution formulation (e.g. Ginzburg-Landau approach, thermodynamically consistent approaches, and microforce-based approach) and reviewing several formulations for the stiffness degradation function and that of the crack driving force. Besides, the paper will go through several methods to estimate the crack aperture width, in addition to reviewing different numerical approaches and implementations. The paper will be concluded by presenting a number of open topics and challenges to be addressed in future works.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据