4.7 Article

Data-driven fatigue life prediction in additive manufactured titanium alloy: A damage mechanics based machine learning framework

期刊

ENGINEERING FRACTURE MECHANICS
卷 252, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2021.107850

关键词

Data-driven; Fatigue life prediction; Additive manufacturing; Damage mechanics; Machine learning

资金

  1. National Natural Science Foundation of China [12002011]

向作者/读者索取更多资源

This paper proposes a machine learning framework based on damage mechanics for data-driven fatigue life prediction of AM titanium alloy. Fatigue life predictions are conducted for AM titanium alloy specimens under different stress levels and stress ratios, compared with experimental data, and parametric studies on prediction performance and fatigue lives are carried out.
Additive manufacturing (AM) technology has been widely employed in the fabrication of titanium alloy parts for aerospace engineering applications. In this paper, a damage mechanics based machine learning framework is presented for the data-driven fatigue life prediction of AM titanium alloy. At first, a theoretical framework including the damage mechanics based fatigue models and random forest model is presented for the fatigue damage analysis and life prediction of the AM titanium alloys under cyclic loadings. Second, a computational methodology is demonstrated in detail from two aspects, that is, the numerical implementation of the damage mechanics based fatigue models and the construction process of the random forest model. After that, fatigue life predictions are carried out for the AM titanium alloy smooth and notched specimens under different stress levels and stress ratios. The predicted results are compared with the experimental data to verify the proposed method. Finally, parametric studies are investigated on the prediction performance and fatigue lives for the AM titanium alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据