4.6 Review

AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours

期刊

FEBS JOURNAL
卷 283, 期 16, 页码 2987-3001

出版社

WILEY
DOI: 10.1111/febs.13698

关键词

2R-ohnologue; adenine nucleotides; AMP-activated protein kinase; cancer; energy homeostasis; LKB1; oncogene; tumour suppressor

资金

  1. Wellcome Trust [097726]
  2. Cancer Research UK [C37030/A15101]
  3. University of Dundee Wellcome Trust Institutional Strategic Support Fund
  4. UK Medical Research Council Developmental Pathway Funding Scheme [G0801767]
  5. Cancer Research UK [15101] Funding Source: researchfish

向作者/读者索取更多资源

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is expressed in essentially all eukaryotic cells, suggesting that it arose during early eukaryotic evolution. It occurs universally as heterotrimeric complexes containing catalytic subunits and regulatory and subunits. Although Drosophila melanogaster contains single genes encoding each subunit, in mammals, each subunit exists as multiple isoforms encoded by distinct genes, giving rise to up to 12 heterotrimeric combinations. The multiple isoforms of each subunit are 2R-ohnologues generated by the two rounds of whole genome duplication that occurred at the evolutionary origin of the vertebrates. Although the differential roles of these isoform combinations remain only partly understood, there are indications that they may have different subcellular locations, different inputs and outputs, and different functions. The multiple isoforms are of particular interest with respect to the roles of AMPK in cancer because the genes encoding some isoforms, such as PRKAA1 and PRKAB2 (encoding 1 and 2), are quite frequently amplified in tumour cells, whereas the genes encoding others, such as PRKAA2 (encoding 2), tend to be mutated, which, in some but not all cases, may result in a loss of function. Thus, although AMPK acts downstream of the tumour suppressor liver kinase B1, and some of its isoform combinations may act as tumour suppressors that restrain the growth and proliferation of tumour cells, other isoform combinations may paradoxically act as oncogenes, perhaps by aiding the survival of tumour cells undergoing environmental stresses such as hypoxia or nutrient deprivation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据