4.7 Article

Renewable LNG production: Biogas upgrading through CO2 solidification integrated with single-loop mixed refrigerant biomethane liquefaction process

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 243, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2021.114363

关键词

Biogas upgrading; Cryogenic separation; CO2 solidification; Anti-sublimation; Liquefied biomethane; Optimization

资金

  1. Priority Research Centers Pro-gram through the National Research Foundation of Korea (NRF) - Ministry of Education [2014R1A6A1031189]

向作者/读者索取更多资源

Biogas upgrading followed by biomethane liquefaction is preferred for long-distance transportation and storage. Cryogenic upgrading technology is a promising option for producing high purity biomethane, despite being energy-intensive, as its integration with the liquefaction process can ultimately reduce the overall energy load.
Biogas upgrading followed by biomethane liquefaction is preferred for long-distance transportation and storage. Cryogenic upgrading technology is a promising option for producing high purity biomethane. Although the cryogenic approach is energy-intensive, its integration with the liquefaction process provides dual benefits (upgrading and precooling of biomethane), ultimately reducing the overall energy load. Herein, a biomethane liquefaction process followed by CO2 solidification is presented. The CO2 solidification phenomenon is studied using the Aspen Hysys (R) v11 and validated against available experimental data. The single-loop mixed refrigerant used for CO2 solidification consists of methane, propane, and CO2, whereas biomethane is liquefied using a conventional mixed refrigerant i.e., nitrogen, methane, ethane, and propane. The modified coordinate descent algorithm is employed to optimize the design variables of the proposed integrated process. The proposed optimal process offers an overall energy savings of 68.6% compared to the published base case. The exergy efficiency of the proposed process is 23.7%. Cryogenic exchangers are the major source of exergy destruction. An economic analysis is also performed to evaluate the preliminary feasibility of the proposed process. In terms of process configuration, energy consumption, exergy efficiency, and process economics, the proposed process is superior to the available base case. The findings of this study will help process engineers achieve sustainable renewable energy by significantly improving the biomethane value chain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据