4.7 Article

Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer

期刊

ENERGY AND BUILDINGS
卷 241, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2021.110966

关键词

PCM-integrated buildings; Indoor temperature; Energy saving; Orthogonal simulation analysis; Envelope type

资金

  1. Fundamental Research Funds for the Central Universities [19CX02043A]
  2. Natural Science Foundation of Shandong Province in China [ZR201702120003]
  3. National Natural Science Foundation of China [51206189]

向作者/读者索取更多资源

The multi-factor orthogonal simulation analysis explored the impact of four key parameters of PCM-integrated building envelopes on energy consumption and indoor thermal comfort in Chinese climate. The influence of these parameters on energy saving and indoor temperature fluctuation was discussed, with the optimal solution being the use of BioPCMTM23 (PCM2) with 7 cm thickness on both wall and roof. Integrating PCM into the envelope can effectively reduce indoor temperature fluctuations and achieve significant energy savings by selecting PCMs based on local climatic conditions.
The multi-factor orthogonal simulation analysis was initiated to investigate the influence degree of four key parameters of PCM-integrated building envelopes on energy consumption and indoor thermal comfort under Chinese climate. The sensitivity and the interaction between four key parameters on energy saving and indoor temperature were discussed. The results showed that: 1) According to the influence degree on energy consumption and indoor thermal comfort time, the four key parameters of PCM envelope can be ranked in descending order as follows: envelope type > PCM layer layout > PCM type > PCM layer thickness. 2) The optimal level of all the cases studied is using BioPCMTM23 (PCM2) with a thickness of 7 cm on the inner side of both wall and roof. 3) Integrating the PCM to the envelope can effectively reduce the indoor temperature fluctuation. Considerable energy saving effects (the energy saving rate is 4.8% - 34.8%) can be achieved by properly selecting the PCMs according to local climatic conditions. The PCMs with high latent heat should be selected and placed in an envelope structure that receives longtime solar radiation and has a large surface area, which can maximize the effect of energy saving and temperature control. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据