4.7 Article

Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model

期刊

ENERGY
卷 227, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.120466

关键词

Thermo-acoustic Stirling engine; Lumped mechanical analogous model; Modern control

资金

  1. Shiraz University of Technology
  2. Iran National Science Foundation (INSF)
  3. Iran National Science Foundation [98012387]

向作者/读者索取更多资源

This paper presents a novel lumped mechanical model incorporating modern control theory to investigate performance and startup condition of thermo-acoustic Stirling engines (TASEs). The study reveals that TASEs can be considered as physical regulators from the viewpoint of modern control theory. Design parameters and quality index are analyzed to evaluate resonance phenomenon in the TASEs, and the proposed mathematical model incorporating the control-based design technique is validated using practical data of three prototype engines.
This paper presents a novel lumped mechanical model incorporating modern control theory to investigate performance and startup condition of thermo-acoustic Stirling engines (TASEs). Although different well-defined mathematical approaches have been devised to design free piston Stirling engines (FPSEs), however, such important analytical methods cannot be directly applied to the TASEs as they are complex fluid systems. Accordingly, a purely mechanical analogous model of TASEs is first presented and then, the similarity of TASEs to FPSEs is revealed. Additionally, manipulating the extracted dynamic equations of the new mechanical analogous model shows that the TASEs are physical regulators from the viewpoint of modern control theory. Indeed, the mentioned idea is a significant outcome of this work and thus, the powerful design techniques of control engineering can be effectively used to simplify the design procedure of the TASEs. Next, the influence of design parameters such as resonator length, inertance length, pulse tube length, hot and cold gas temperatures, mean pressure, connecting tube, and compliance on the real and imaginary parts of the dominant poles of the physical closed-loop system is investigated based on the control principles. Besides, a quality index is introduced to evaluate resonance phenomenon in the TASEs. Finally, validity of the proposed mathematical model incorporating the control-based design technique is affirmed using practical data of three prototype engines. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据