4.7 Article

Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process

期刊

ENERGY
卷 227, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.120431

关键词

Coal fire; Thermal effect; Thermogravimetry; Differential scanning calorimetry; Thermal release

资金

  1. National Key R&D Program of China [2018-YFC080-790 0]
  2. National Natural Science Foundation of China [51974233]

向作者/读者索取更多资源

Pre-oxidised coal has poorer ignition performance and burnout capacity compared to raw coal. However, its combustion rate and short-term combustion intensity are higher than raw coal. The temperature at which thermal release occurs rapidly for pre-oxidised coal lags behind raw coal, and its maximum thermal release power is less than that of raw coal.
Coal fire disasters occur frequently in exposed or underground coal zones or gobs, which usually triggered by pre-oxidised coal spontaneous combustion (PCSC). The thermal mass loss characteristics and thermal effects of pre-oxidised coal with the oxidation temperature and oxygen concentration were investigated. The thermogravimetry (TG) results revealed that the oxidation reaction occurred earlier for the pre-oxidised coal than for raw coal. The pre-oxidised coal had a poor ignition performance and burnout capacity than that of raw coal. In addition, the comprehensive combustion performance of pre oxidised coal is weaker than that of raw coal, but its combustion rate and short-term combustion intensity are higher than raw coal. The differential scanning calorimetry (DSC) results indicated that the temperature at which the thermal release of pre-oxidised coal increases rapidly lags behind that of raw coal. Moreover, the maximum thermal release power and thermal release for the pre-oxidised coal were less than those for raw coal. The risk of PCSC changes with the increase of oxidation temperature, and there is a critical value of oxidation temperature. When the oxidation temperature was less than the critical value the risk of PCSC is higher than that of raw coal. Furthermore, the critical value decreases with the increase of oxygen concentration. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据