4.7 Article

A simultaneous optimization model for a heat-integrated syngas-to-methanol process with Kalina Cycle for waste heat recovery

期刊

ENERGY
卷 227, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.120536

关键词

Kalina cycle; Process integration; Waste heat recovery; Syngas to methanol; Simultaneous optimization

资金

  1. China Postdoctoral Science Foundation [2019TQ0045]
  2. National Natural Science Foundation of China [22008023, 21776035]

向作者/读者索取更多资源

A novel simultaneous optimization model is proposed for a heat-integrated syngas-to-methanol process, addressing complex interactions between waste heat recovery and process synthesis. The model achieves maximized net power output by optimizing key parameters of the Kalina Cycle and methanol production process. Results show an increase in net power output by optimizing critical parameters in the system.
The syngas to methanol (STM) process is an energy-intensive chemical production process, and effective utilization of waste heat can improve energy and economy efficiency. To address current challenges that complex interactions between process synthesis and waste heat recovery are not considered, a novel simultaneous optimization model is proposed for a heat-integrated syngas-to-methanol process with Kalina Cycle (KC) for waste heat recovery, where the identified key parameters of KC and STM are optimized simultaneously without reducing the overall conversion of hydrogen to produce methanol. In developing the model, an enhanced Heat Integration model that considers variable temperatures and flowrates is established to perform thermal cycle optimization with process synthesis by combination of simulation-based modelling approach and equation-based mathematical programming approach. The STM process is synthesized based on a rigorous kinetic modelling approach and the effect of process parameters on waste heat recovery is further analyzed by control variable method. The results show that the net power output of the whole system increases with the decrease of reaction pressure. The optimal medium temperature and inlet temperature of reactor are 180 degrees C and 160 degrees C, respectively. Moreover, the presented model can achieve the optimal coupling structure of KC and STM process with the maximized net power output of 15,206.3 kW, which increases by 81.6% compared with that of 8371.4 kW derived by the traditional sequential optimization method in previous study. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据