4.7 Article

Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning

期刊

ENERGY
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.122108

关键词

Energy recovery; Flywheel energy storage system; Fault diagnosis; Inverted residual neural network

向作者/读者索取更多资源

The health of bearings in flywheel energy storage systems is crucial for effective energy recovery during train braking, but diagnosing faults based on complex vibration signals is challenging. This study proposes a fault diagnosis method based on VMD energy entropy, which optimizes parameters to extract feature vectors and utilizes a deep learning model for fault diagnosis, achieving high diagnostic accuracy.
Flywheel energy storage system is widely used in train braking energy recovery, and has achieved excellent energy-saving effect. As a key component of the flywheel energy storage system, the health of the bearing is greatly significant to realize the effective recovery of train braking energy. The vibration signal of the bearing presents complex nonlinear and non-stationary characteristics, which makes it difficult to diagnose the fault of the bearing. To solve this problem, a fault diagnosis method for bearing of flywheel energy storage system based on parameter optimization Variational Mode Decomposition (VMD) energy entropy is proposed. Firstly, the improved Sparrow Search Algorithm is used to optimize VMD parameters with the dispersion entropy as the fitness value. Then, the original signal is decomposed into a series of intrinsic mode components by using the optimized VMD algorithm, and the energy entropy of each component is calculated to construct the feature vector. Finally, an Inverted Residual Convolutional Neural Network (IRCNN) is used as feature vector input model for fault diagnosis. The experimental results show that the proposed method can effectively extract the bearing fault characteristics and realize accurate fault diagnosis, and the recognition rate reaches 97.5%, which is better than the comparison method. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据