4.5 Article

Application of Technological Processes to Create a Unitary Model for Energy Recovery from Municipal Waste

期刊

ENERGIES
卷 14, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/en14113118

关键词

waste management; energy recovery; model of energy recovery; biogas; fermentation; combustion

向作者/读者索取更多资源

This paper discusses the functioning of a highly effective waste management system based on the ERWP model, which includes simulations illustrating the energetic potential of municipal waste stored and processed in biological and physicochemical processes. The model, consisting of four objects constituting a comprehensive technical infrastructure, generates a significant amount of energetic refuse-derived fuel each day. This waste management system fulfills the criteria of energetic recycling and allows for recovery of energy in the form of gas and heat equivalent.
The subject matter of this paper is the functioning of a highly effective waste management system. Assumptions of the Energy Recovery Waste Processing (ERWP) model, being a universal solution for towns and regions irrespective of their population, are presented here. The result of simulations illustrating the energetic potential of municipal waste stored and processed in biological and physicochemical processes are also presented. Calculations were performed for the municipality of Koszalin (Poland), with a population of 106,000. Mixed household and commercial waste, organic waste, waste from selective collection and sewage sludge from a municipal wastewater treatment plant were considered in the waste mass balance. Empirical equations and unit coefficients describing the energetic efficiency of particular processes originating from the author's own research work as well as from the results available from the scientific literature were used in the calculations. The developed ERWP model is based on the functioning of four objects constituting a comprehensive technical infrastructure, i.e., biological stabilisation in air condition (BSAC), mechanical treatment plant (MTP), cogeneration system plant (CSP) and gas production plant (GPP) where two independent modules operate, namely, dry/wet methane fermentation (DMF and WMF). Each day, this system generates highly energetic refuse-derived fuel (RDF) for combustion in amounts of 82.2 t for CSP and 127.3 t for GPP, generating 5519 m(3) of gas/d. The value of the energy contained in such generated gas and in waste making up an alternative fuel is 1027.4 GJ, which is equivalent to 285.4 MWh. It should be noted that the creation of a waste management system based on the ERWP model assumptions fulfills the criteria of energetic recycling and allows for recovery of energy in the form of gas and heat equivalent to 79,917.6 MWh/a, i.e., 754 kWh/inhabitant/a.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据