4.5 Review

Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis

期刊

ENERGIES
卷 14, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/en14113107

关键词

methane cracking; H-2 production; conventional catalysts; deactivation; regeneration; molten metals; salts pyrolysis; heat transfer; concentrated solar energy; carbon characteristics

资金

  1. French Investments for the future program by the National Agency for Research [ANR-10-LABX-22-01]

向作者/读者索取更多资源

Methane cracking provides a zero CO/CO2 emission hydrogen production alternative, with recent focus on using molten metals/salts to prevent rapid deactivation. This advanced technology could potentially improve sustainability through energy and heat transfer enhancements.
Currently, hydrogen is mainly generated by steam methane reforming, with significant CO2 emissions, thus exacerbating the greenhouse effect. This environmental concern promotes methane cracking, which represents one of the most promising alternatives for hydrogen production with theoretical zero CO/CO2 emissions. Methane cracking has been intensively investigated using metallic and carbonaceous catalysts. Recently, research has focused on methane pyrolysis in molten metals/salts to prevent both reactor coking and rapid catalyst deactivation frequently encountered in conventional pyrolysis. Another expected advantage is the heat transfer improvement due to the high heat capacity of molten media. Apart from the reaction itself that produces hydrogen and solid carbon, the energy source used in this endothermic process can also contribute to reducing environmental impacts. While most researchers used nonrenewable sources based on fossil fuel combustion or electrical heating, concentrated solar energy has not been thoroughly investigated, to date, for pyrolysis in molten media. However, it could be a promising innovative pathway to further improve hydrogen production sustainability from methane cracking. After recalling the basics of conventional catalytic methane cracking and the developed solar cracking reactors, this review delves into the most significant results of the state-of-the-art methane pyrolysis in melts (molten metals and salts) to show the advantages and the perspectives of this new path, as well as the carbon products' characteristics and the main factors governing methane conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据