4.5 Article

An Improved Method of Reservoir Facies Modeling Based on Generative Adversarial Networks

期刊

ENERGIES
卷 14, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/en14133873

关键词

reservoir modeling; facies modeling; deep learning; generative adversarial networks

资金

  1. Major National Science and Technology Projects of China [2017ZX05013-002-002, 2016ZX0510-001]

向作者/读者索取更多资源

The paper introduces a reservoir facies modeling method based on Generative Adversarial Networks (GANs), which learns and generates reservoir facies models by modeling prior geological patterns. Experimental results demonstrate that the method can meet prior geological patterns and effectively constrain hard data, showing potential for practical applications.
As the reservoir and its attribute distribution are obviously controlled by sedimentary facies, the facies modeling is one of the important bases for delineating the area of high-quality reservoir and characterizing the attribute parameter distribution. There are a large number of continental sedimentary reservoirs with strong heterogeneity in China, the geometry and distribution of various sedimentary microfacies are relatively complex. The traditional geostatistics methods which have shortage in characterization of the complex and non-stationary geological patterns, have limitation in facies modeling of continental sedimentary reservoirs. The generative adversarial network (GANs) is a recent state-of-the-art deep learning method, which has capabilities of pattern learning and generation, and is widely used in the domain of image generation. Because of the similarity in content and structure between facies models and specific images (such as fluvial facies and the images of modern rivers), and the various images generated by GANs are often more complex than reservoir facies models, GANs has potential to be used in reservoir facies modeling. Therefore, this paper proposes a reservoir facies modeling method based on GANs: (1) for unconditional modeling, select training images (TIs) based on priori geological knowledge, and use GANs to learn priori geological patterns in TIs, then generate the reservoir facies model by GANs; (2) for conditional modeling, a training method of unconditional-conditional simulation cooperation (UCSC) is used to realize the constraint of hard data while learning the priori geological patterns. Testing the method using both synthetic data and actual data from oil field, the results meet perfectly the priori geological patterns and honor the well point hard data, and show that this method can overcome the limitation that traditional geostatistics are difficult to deal with the complex non-stationary patterns and improve the conditional constraint effect of GANs based methods. Given its good performance in facies modeling, the method has a good prospect in practical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据