4.5 Review

A critical review on the fabrication techniques that can enable higher throughput in dielectrophoresis devices

期刊

ELECTROPHORESIS
卷 43, 期 1-2, 页码 232-248

出版社

WILEY
DOI: 10.1002/elps.202100179

关键词

3D (three-dimensional); Extruded; Posts; Throughput; Volumetric

向作者/读者索取更多资源

Increasing the cross-sectional area of a channel can lead to higher flow rates and throughput, but the required electric field gradient decreases drastically as one moves away from the electrodes, requiring asymmetric scaling of the channel cross section.
The sorting of targeted cells in a sample is a cornerstone of healthcare diagnostics and therapeutics. This work focuses on the use of dielectrophoresis for the selective sorting of targeted bioparticles in a sample and how the lack of throughput has been one important practical challenge to its widespread practical implementation. Increasing the cross-sectional area of a channel can lead to higher flow rates and thus the capability to process a larger sample volume per unit of time. However, the required electric field gradient that is generated by polarized electrodes drastically decreases as one moves away from the electrodes. Hence, the scaling up of the channel cross section must be done asymmetrically. One desires a channel aspect ratio AR = height/width that is much smaller or much larger than 1. Since reducing footprint of the DEP device is important to ensure affordability, the use of channels with AR>>1 is desired. This creates the challenge to fabricate electrodes on the sidewalls of multiple channels with AR>>1, or a channel embedding an array of electrodes with a gap in between them with AR >>1. This critical review first details the motivation for using three-dimensional (3D) DEP devices to improve throughput and then describes selected techniques that have been used to fabricate them. Techniques include electrodeposition, deep etching, thick-film photolithography, and co-fabrication. Electrode materials addressed include metals, silicon, carbon, PDMS-based composites as well as conductive polymers and fluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据