4.6 Article

Tailoring active sites of iron-nitrogen-carbon catalysts for oxygen reduction in alkaline environment: Effect of nitrogen-based organic precursor and pyrolysis atmosphere

期刊

ELECTROCHIMICA ACTA
卷 391, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2021.138899

关键词

Oxygen reduction reaction; Alkaline pH; Iron-nitrogen-carbon catalysts; Rotating ring disk electrode; Surface chemistry

资金

  1. Regione Lazio through project POR FESR LAZIO 2014-2020 [A0375-2020-36492]
  2. University of Roma Tor Vergata

向作者/读者索取更多资源

Fe-N-C catalysts were synthesized using different nitrogen sources and pyrolysis atmospheres, resulting in electrodes with high porosity and accessible active sites. The use of imidazole as a nitrogen-rich organic precursor and pyrolysis in NH3 improved the oxygen reduction reaction activity and durability in alkaline conditions.
Fe-N-C catalysts were synthesized from a nitrogen and iron wet impregnation of carbon black pearls followed by pyrolysis steps. Three different nitrogen sources (dopamine, imidazole and benzimidazole), and two different pyrolysis atmospheres (Ar and NH3) were used. The obtained materials were characterized in terms of structure, morphology, surface chemistry, and electrochemical properties. Electrodes with a high porosity and accessible active sites were obtained tailoring the synthesis parameters, as indicated by Raman and X-ray photoelectron spectroscopies, and cyclic voltammetry with rotating ring disk electrode. Pyrolysis under ammonia atmosphere led to high electrochemical active surface area (ECSA) and the use of imidazole as nitrogen-rich organic precursor improved oxygen reduction reaction (ORR) activity in alkaline pH. This can be ascribed to the modification of surface chemistry of the electrocatalysts triggered by the N-rich organic precursor and pyrolysis atmosphere. The catalyst obtained by using imidazole and pyrolyzed in NH3 had a variety of iron-, oxygen- and nitrogen-functional groups, nitrogen being mainly distributed in imine-, pyridinic- and pyrrolic-N. In addition, durability tests showed a stable ECSA and ORR activity after cycling of the prepared electrocatalysts outperforming durability of Pt-based materials in alkaline environment and indicating applicability in anion exchange membrane fuel cells. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据