4.2 Article

Revisiting Delithiated Li1.2Mn0.54Ni0.13Co0.13O2: Structural Analysis and Cathode Properties in Magnesium Rechargeable Battery Applications

期刊

ELECTROCHEMISTRY
卷 89, 期 4, 页码 329-333

出版社

ELECTROCHEMICAL SOC JAPAN
DOI: 10.5796/electrochemistry.21-00038

关键词

Mg Rechargeable Battery; Cathode Material; Crystal Structure; Neutron Diffraction

资金

  1. Japan Science and Technology Agency (JST) [JPMJAL1301]

向作者/读者索取更多资源

The chemically-delithiated Li1.2Mn0.54Ni0.13Co0.13O2 is redefined as Li0.17Mn0.72Ni0.18Co0.18O2 with R (3) over barm structure, which is suitable for Mg2+ intercalation. By using specific electrolytes and cell configuration, the active material can achieve a high discharge capacity.
Chemically-delithiated Li1.2Mn0.54Ni0.13Co0.13O2 is regarded as a potential candidate of cathode active materials for magnesium rechargeable batteries owing to its large deliverable capacity and high operation voltage compared to conventional layered transition metal oxides. Our previous study suggested its chemical composition as Li0.13Mn0.54Ni0.13Co0.13O2-delta by X-ray diffraction combined with XAFS analysis. We herein re-analyzed the substantial composition and crystal structure by employing titration technique and combination of neutron and synchrotron X-ray diffractions. Two topotactic phases both belonging to the space group of R (3) over barm were strongly suggested by Rietveld analysis, and the chemical formula was subsequently re-defined as Li0.17Mn0.72Ni0.18Co0.18O2 where oxygen defects were filled by a rearrangement from C2/m structure. Although the battery performance of that active material was poor in the previous study, the discharge capacity greater than 400 mAh g(-1), ca. 95% of the theoretical capacity, was achieved by using certain anodically stable electrolytes and specific cell configuration. This result strongly implies that the R (3) over barm structure is particularly suitable as a host material for Mg2+ intercalation. (C) The Author(s) 2021. Published by ECSJ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据