4.6 Article

Modified moth-Flame optimization for strategic integration of fuel cell in renewable active distribution network

期刊

ELECTRIC POWER SYSTEMS RESEARCH
卷 197, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2021.107323

关键词

Moth fly optimization; Distributed energy resources; Fuel cell; Active distribution network; Renewable; Optimization; Bi-layer optimization

向作者/读者索取更多资源

This article proposes a novel bi-layer optimization model to maximize the renewable power hosting potential of an active distribution network, using a modified version of the MFO algorithm to address multiple objectives and ancillary service challenges effectively.
In this article, a novel bi-layer optimization model is proposed for strategic accommodation of fuel cell (FC) in an active distribution network (ADN) that consists of wind turbines and photovoltaic modules. The foremost objective of the proposed model is to maximize the renewable power hosting potential of the distribution system. In outward-layer of the bi-layer optimization model, a vital multi-objective function is broached to assist the daily challenges of ancillary services. The objectives considered are minimizing the annual energy loss of the network, node voltage deviation, inverse power flow, demand deviation and conversion losses for battery energy storage system (BESS) connected with FC. Further, a modified version of moth flame optimization (MFO) is also proposed by overcoming a few limitations observed in its traditional variant. The proposed modification has enhanced the exploration and exploitation potential of MFO such that, their correct balance seeks the global optima. The presented modification is validated before applying it to the proposed simulation model. The proposed modified MFO is deployed to determine the optimization elements of the outward-layer. These are the details related to DERs accommodation. Whereas, a heuristic approach is proposed to solve the inward-layer optimization model designed to determine the optimal hourly power dispatch by BESS connected to FC, as per size suggested by outward-layer. The approach is designed to minimize the considered objectives i.e. annual energy losses and inverse power flow. To exhibit the competency of the proposed model, it is implemented on 33 and 108-bus balance distribution systems for numerous test cases. The resemblance of simulation obtain results reveals the inspirational dominance of the proposed optimization model. Further, the modified variant of MFO is found very effective to enhance the performance of ADN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据