4.7 Article

iTRAQ-based quantitative proteomic analysis of low molybdenum inducing thymus atrophy and participating in immune deficiency-related diseases

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2021.112200

关键词

Molybdenum; Ribosomal proteins; Heavy metal; Proteomics; ITRAQ

资金

  1. National Natural Science Foundation of China [31972752]
  2. Natural Science Foundation of Henan [202300410120]

向作者/读者索取更多资源

The study found that a low molybdenum diet led to significant atrophy of the thymus in mice, with decreased thymus weight and organ index. Differential protein analysis and bioinformatics revealed that the proteins affected by low molybdenum were mainly involved in protein metabolism and nucleic acid binding activity.
Molybdenum is a trace element with extremely uneven distribution in the environment. It constitutes the active sites of molybdenum enzymes that can catalyze redox reactions in almost all organisms. In this study, a mouse model with a low molybdenum diet was established to investigate the differential protein expressions in the thymus and the mechanism of molybdenum regulating thymocyte development. Results showed that the thymus evidently atrophied, and the weight and organ index of the thymus substantially decreased under the condition of low molybdenum (P < 0.01). A total of 274 differentially expressed proteins (DEPs) were screened through isobaric tag for relative and absolute quantification; amongst them, ribosomal proteins (38) were the most abundant. Bioinformatics analysis revealed that DEPs were mainly involved in protein metabolism (18%), nucleus (15%) and nucleic acid binding activity (17%), corresponding to biological process, cellular component and molecular function, respectively. Moreover, DEPs induced by low molybdenum were enriched in 94 pathways, of which typical maps including ribosome, oxidative phosphorylation and systemic lupus erythematosus. Flow cytometry analysis indicated the prominent imbalances of CD4+ and CD8+ cell ratios (P < 0.05, P < 0.01), suggesting the disordered development of T cell subsets. Overall, low molybdenum resulted in thymus atrophy by interfering with ribosomal protein expression and protein metabolism. This study provides a data platform for revealing the linkage between molybdenum and thymus-dependent immunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据