4.7 Article

Ambient air pollutants, diabetes and risk of newly diagnosed drug-resistant tuberculosis

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2021.112352

关键词

Primary drug resistance; Tuberculosis; Ambient air pollution; Diabetes; Risk factor

资金

  1. Department of Science & Technology of Shandong Province (CN) [2007GG30002033, 2017GSF218052]
  2. Natural Science Foundation of Shandong Province (CN) [ZR2020KH013]
  3. Jinan Science and Technology Bureau (CN) [201704100]

向作者/读者索取更多资源

The study found that high O-3 exposure was associated with increased drug resistance, while NO2 was linked to decreased drug resistance risk. PM2.5, PM10, and SO2 showed protective effects on certain drug resistance.
Background: Drug-resistant tuberculosis (DR-TB), diabetes and exposure to air pollution are thought to be important threat to human health, but no studies have explored the effects of ambient air pollutants on DR-TB when adjusting diabetes status so far. Methods: We performed a study among 3759 newly diagnosed TB cases with drug-susceptibility testing results, diabetes status, and individual air pollution data in Shandong from 2015 to 2019. Generalized linear mixed models (GLMM) including three models (Model 1: without covariates, Model 2: adjusted by diabetes status only, Model 3: with all covariates) were applied. Results: Of 3759 TB patients enrolled, 716 (19.05%) were DR-TB, and 333 (8.86%) had diabetes. High exposure to O-3 was associated with an increased risk of RFP-resistance (Model 2 or 3: odds ratio (OR) = 1.008, 95% confidence intervals (CI): 1.002-1.014), ethambutol-resistance (Model 3: OR = 1.015, 95%CI: 1.004-1.027) and any rifampicin+streptomycin resistance (Model 1,2,3: OR = 1.01, 95%CI: 1.002-1.018) at 90 days. In contrast, NO2 was associated with a reduced risk of DR-TB (Model 3: OR = 0.99, 95%CI: 0.981-0.999) and multidrug-resistant TB (MDR-TB) (Model 3: OR = 0.977, 95%CI: 0.96-0.994) at 360 days. Additionally, SO2 (Model 1, 2, 3: OR = 0.987, 95%CI: 0.977-0.998) showed a protective effect on MDR-TB at 90 days. PM2.5 (90 days, Model 2: OR = 0.991, 95%CI: 0.983-0.999), PM10 (360 days, Model 2: OR = 0.992, 95%CI: 0.985-0.999) had protective effects on any RFP+SM resistance. Conclusions: O-3 contributed to an elevated risk of TB resistance but PM2.5, PM10, SO2, NO2 showed an inverse effect. Air pollutants may affect the development of drug resistance among TB cases by adjusting the status of diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据