4.2 Article

Phase evolution, characterisation, and performance of cement prepared in an oxy-fuel atmosphere

期刊

FARADAY DISCUSSIONS
卷 192, 期 -, 页码 113-124

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6fd00032k

关键词

-

资金

  1. EPSRC (Engineering and Physical Sciences Research Council) through Research Councils Initiative on Multilateral Research [EP/K021710/1 (G8-2012)]
  2. Engineering and Physical Sciences Research Council [EP/K021710/1] Funding Source: researchfish
  3. EPSRC [EP/K021710/1] Funding Source: UKRI

向作者/读者索取更多资源

Cement manufacture is one of the major contributors ( 7-10%) to global anthropogenic CO2 emissions. Carbon capture and storage ( CCS) has been identified as a vital technology for decarbonising the sector. Oxy-fuel combustion, involving burning fuel in a mixture of recycled CO2 and pure O-2 instead of air, makes CO2 capture much easier. Since it combines a theoretically lower energy penalty with an increase in production, it is attractive as a CCS technology in cement plants. However, it is necessary to demonstrate that changes in the clinkering atmosphere do not reduce the quality of the clinker produced. Clinkers were successfully produced in an oxy-fuel atmosphere using only pure oxides as raw materials as well as a mixture of oxides and clay. Then, CEM I cements were prepared by the addition of 5 wt% gypsum to the clinkers. Quantitative XRD and XRF were used to obtain the phase and elemental compositions of the clinkers. The particle size distribution and compressive strength of the cements at 3, 7, 14, and 28 days' ages were tested, and the effect of the particle size distribution on the compressive strength was investigated. Additionally, the compressive strength of the cements produced in oxy-fuel atmospheres was compared with those of the cement produced in air and commercially available CEMEX CEM I. The results show that good-quality cement can be successfully produced in an oxy-fuel atmosphere and it has similar phase and chemical compositions to CEM I. Additionally, it has a comparable compressive strength to the cement produced in air and to commercially available CEMEX CEM I.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据