4.7 Article

Microbial abundance and enzymatic activity from tussock and shrub soil in permafrost peatland after 6-year warming

期刊

ECOLOGICAL INDICATORS
卷 126, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecolind.2021.107589

关键词

Climate change; Permafrost peatland; Functional gene; Soil enzyme; Methane

资金

  1. National Natural Science Foundation of China [41620104005, 41871090, 41671105, 41730643, 41571089]
  2. Key Research Program of Frontier Sciences, Chinese Academy of Sciences [QYZDJSSWDQC013]

向作者/读者索取更多资源

Soil microbes and enzymes in permafrost peatland are sensitive to temperature changes, with long-term warming leading to increased microbial abundance, accelerated carbon cycling, and enhanced nitrogen availability. The study results provide new insights into the response of plant-soil-microbe interactions in permafrost peatlands to climate change.
Soil microbes and enzymes in permafrost peatland are sensitive to temperature changes, which might result in more potential loss of carbon and increase in available nitrogen from permafrost peatlands in a warming world. We previously demonstrated that 3-year warming could affect soil microbial abundance and enzymatic activity. However, soil microbial abundance and enzymatic activity in permafrost peatlands under long-term climate warming is not well understood. Therefore, a 6-year field manipulation experiment was used to assess the impact of long-term warming on soil microbial abundance and enzymatic activity in a permafrost peatland in northeastern China. Results showed that 6-year warming increased the abundance of bacteria in 0 to 15 cm soil under tussock and from shrub rhizosphere, fungi from shrub non-rhizosphere, and archaea under tussock and from the rhizosphere of shrub. These increased microbial abundances could stimulate soil carbon cycling and accelerate soil carbon loss in permafrost peatland under warming. Six-year warming increased methanogen abundance in 0 to 15 cm soil and methanotroph abundance in 15 to 30 cm soil under tussock, indicating that warming could enhance CH4 cycling. Soil nirS-denitrifier abundance from the 0 to 15 cm shrub rhizosphere increased under warming, thereby suggesting that warming stimulated denitrification and N2O emission. ?-Glucosidase activity in 0 to 15 cm soil under tussock and from shrub rhizosphere increased, but invertase activity in 15 to 30 cm soil under tussock and from shrub rhizosphere showed opposite tendency under warming. DOC content tended to increase in the 0 to 15 cm rhizosphere soil, but decreased in shrub non-rhizosphere soil. Warming increased NH4+?N content in both rhizosphere and non-rhizosphere soil. Positive correlations between abundances of bacteria, archaea, contents of DOC, and NH4+?N in 0 to 15 cm soil suggest that increases in bacterial and archaeal abundance could indicate higher carbon and nitrogen availability in topsoil of permafrost peatlands under warming. The results offer new insights into the response of plant?soil-microbe interactions in permafrost peatlands to climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据