4.7 Article

Tree canopy defoliation can reveal growth decline in mid-latitude temperate forests

期刊

ECOLOGICAL INDICATORS
卷 127, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecolind.2021.107749

关键词

Basal area increment; Climate change mitigation; Defoliation threshold; Forest health; Meta-analysis; Permanent monitoring plots

资金

  1. RENECOFOR monitoring program - French National Forest Office (ONF)
  2. French Ministry in charge of Agriculture
  3. French Ministry in charge of Ecology
  4. French Agency for Environment (ADEME)
  5. European Union

向作者/读者索取更多资源

The study found that defoliation significantly impacts tree growth, with even slight defoliation leading to a significant reduction in Basal Area Increment. Trees affected by mild to moderate defoliation show a decrease in overall growth capacity.
Climate and weather fluctuations and changes are the most important environmental drivers of tree canopy defoliation, an indicator of forest health. We examined the relationship between tree defoliation and Basal Area Increment (BAI), a dimension of tree growth related to wood biomass increment and carbon sequestration and therefore to the climate change mitigation potential of forests. We analysed data from mostly even-aged, singlespecies permanent monitoring plots in France over two growing periods (1995-2004: 47 plots, 2008 trees; 2000-2009: 63 plots, 3116 trees) and for which precipitation deficit was identified as the main environmental driver of defoliation. Trees from ten different species were assessed annually for defoliation and measured periodically for growth, from which we derived periodical (10-year) BAI (BAIperiod). We investigated (i) direction and significance of defoliation-BAIperiod relationships and (ii) occurrence, size and significance of BAI deviation of progressively defoliated trees in proportion to the BAI of undefoliated trees (BAIrel). Analyses were first carried out at the level of individual plots, with results subsequently evaluated using meta-analysis and further aggregated at different levels (all species, functional groups, individual species). BAIperiod resulted negatively and significantly related to defoliation, with a significant reduction detected already at slight (15%) defoliation level. A generalized statistically significant reduction of BAIrel was obvious, leading to an estimated reduction of 0.7-0.8% per 1% increase in defoliation for conifers and 0.9% for broadleaves. Considering the observed distribution of trees along the defoliation range, our results indicate an overall growth reduction of ca. 42% in comparison to a theoretical population of undefoliated trees. Shifts in such a distribution can result into loss or gain of growth, which in turn may have cascading effects on carbon sequestration and therefore on land-climate interactions. In the context of the significant increase in defoliation observed in Europe in recent decades, our results suggest that even slight and moderate variations in defoliation may have had a significant impact on tree and forest growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据