4.6 Article

Fas/FasL of pacific cod mediated apoptosis

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dci.2021.104022

关键词

Fas; FasL; FADD; Gadus macrocephalus; Nervous necrosis virus

资金

  1. Dalian Highlevel Talent Innovation Project [2019RQ121]
  2. Education Department of Liaoning Province [JL201902]
  3. National Natural Science Foundation of China [31302202]
  4. China Postdoctoral Science Foundation [2016M602391]

向作者/读者索取更多资源

The Fas/FasL pathway in Pacific cod plays a crucial role in virus defense and cell apoptosis, with PcFas and PcFasL regulating EPC cell apoptosis by modulating the expression of multiple genes.
Fas and Fas ligand (FasL) pathway plays important roles in virus defense and cell apoptosis. In our previous work, nervous necrosis virus (NNV) was discovered in Pacific cod (Gadus macrocephalus), and the Fas ligand (PcFasL) was up-regulated when NNV outbreak, however, signal transmission of Fas/FasL in fish are still unclear. In the present study, Pacific cod Fas (PcFas), PcFasL and Fas-associating protein with a novel death domain (PcFADD) were characterized. The predicted protein of PcFas, PcFasL and PcFADD includes 333 aa, 90 aa and 93 aa, separately. 3-D models of PcFas, PcFasL and PcFADD were well constructed based on reported templates, respectively, even though the sequence homology with other fish is very low. The transcript levels of PcFas increased gradually from 15 day-post hatching (dph) to 75dph. PcFas was significantly up-regulated when cod larvae had NNV symptoms at 24dph, 37dph, 46dph, 69dph, and 77dph. Subcellular localization revealed that PcFasL was located in the cytoplasm, while PcFas was mainly located in the cell membrane. Exogenous expressed PcFasL of 900 ?g/mL could kill the Epithelioma papulosum cyprinid (EPC) cells by MTT test, but low concentration has no effect on the cells. qPCR analysis showed that overexpression of PcFas could significantly up-regulate the expression of genes related to Fas/FasL signaling pathway, including bcl-2, bax, and RIP3, while overexpression of PcFasL significantly up-regulate the expression of caspase-3, caspase-9, and MLKL. Overexpression of PcFas or PcFasL could induce EPC apoptosis significantly by flow cytometry, which was consistent with the results of caspase-3 mRNA level increasing. The results indicated that NNV could induce apoptosis through Fas/FasL signal pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据