4.3 Article

Quantitative Trait Loci Identification by Estimating the Genetic Model based on the Extremal Samples

期刊

CURRENT GENOMICS
卷 22, 期 5, 页码 363-372

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1389202922666210625161602

关键词

Genetic association studies; quantitative trait loci; extreme samples; genetic model selection; hardy-weinberg disequilibrium; maximin efficiency robust test

资金

  1. Natural Science Foundation of Anhui Province [2008085MA09]
  2. Anhui Medical University [XJ201710]

向作者/读者索取更多资源

The paper introduces a novel two-step robust-efficient approach, the genetic model selection (GMS) method for quantitative trait analysis. GMS selects a genetic model by testing Hardy-Weinberg disequilibrium (HWD) with extremal samples of the population in the first step and then applies the corresponding genetic model-specific t-test in the second step, showing higher efficiency than existing methods.
Background: In genetic association studies with quantitative trait loci (QTL), the association between a candidate genetic marker and the trait of interest is commonly examined by the omnibus F test or by the t-test corresponding to a given genetic model or mode of inheritance. It is known that the t-test with a correct model specification is more powerful than the F test. However, since the underlying genetic model is rarely known in practice, the use of a model-specific t-test may incur substantial power loss. Robust-efficient tests, such as the Maximin Efficiency Robust Test (MERT) and MAX3 have been proposed in the literature. Methods: In this paper, we propose a novel two-step robust-efficient approach, namely, the genetic model selection (GMS) method for quantitative trait analysis. GMS selects a genetic model by testing Hardy-Weinberg disequilibrium (HWD) with extremal samples of the population in the first step and then applies the corresponding genetic model-specific t-test in the second step. Results: Simulations show that GMS is not only more efficient than MERT and MAX3, but also has comparable power to the optimal t-test when the genetic model is known. Conclusion: Application to the data from Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort demonstrates that the proposed approach can identify meaningful biological SNPs on chromosome 19.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据