4.7 Article

Processing and characterization of geopolymer and sintered geopolymer foams of waste glass powders

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 300, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2021.124259

关键词

Glass; Powder; Geopolymer; Foam; Aluminum; Sintering; Compressive strength; Thermal conductivity

向作者/读者索取更多资源

Geopolymer foams were prepared using fine and coarse waste glass powders with an activation solution of NaOH and Na2SiO3. The effects of different factors on the expansion and temperature behavior of the slurries were investigated, as well as the compression strengths and thermal conductivities of the resulting foams. Increasing foam density led to higher compressive strength and thermal conductivity, with sintering at too high temperatures resulting in reduced foam density.
Geopolymer foams of fine and coarse waste glass (WG) powders were prepared using an activation solution of NaOH (8 M) and Na2SiO3. The effects of WG powder particle size, solid/liquid ratio (S/L = 1, 1.5, and 2) and Al foaming agent content (2-20 wt%) on the expansion and temperature behavior of the slurries were determined in-situ using a laser sensor and a thermocouple, respectively. The geopolymer foams processed using a coarse WG powder slurry, S/L = 2, and 2 wt% Al, were further sintered at 600, 700, 725, and 750 degrees C. The compression strengths and thermal conductivities of the geopolymer and sintered geopolymer foams were also determined. The slurry expansions continued until about a maximum, and the temperatures of the slurries increased to a maximum, 85-88 degrees C. At the maximum temperature, the slurry evaporation and the resultant increase in the S/L ratio limited the slurry expansion. Increasing the Al content decreased the final density of the foams (238-555 kg m-3), while the coarse powder slurries resulted in lower densities than the fine powder slurries. Three crystal phases, muscovite, sodium aluminum silicate hydrate, and thermonitrite, were determined in the geopolymer foams. The muscovite formation was noted to be favored at high S/L ratios. During sintering, the partial melting of glass particles started after about 700 degrees C, while sintering above this temperature decreased the final density of the foams. The reduced density above 700 degrees C was ascribed to the release of CO2 due to the decomposition of thermonitrite. Both the compressive strength and thermal conductivity of the geopolymer and sintered geopolymer foams increased with increasing foam density. The highest increase in the compressive strength and reduction in the density were seen in the geopolymer foams sintered at 750 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据