4.0 Article

Deep learning based fusion model for COVID-19 diagnosis and classification using computed tomography images

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1063293X211021435

关键词

deeplearning; COVID-19; weiner filtering; convolutional neural network; Gaussian Naive Bayes; Deep learning multimodal fusion

向作者/读者索取更多资源

This study aims to develop a deep learning-based model for COVID-19 diagnosis and classification from CT images, showing superior performance in experimental validation with high accuracy and sensitivity.
Recently, the COVID-19 pandemic becomes increased in a drastic way, with the availability of a limited quantity of rapid testing kits. Therefore, automated COVID-19 diagnosis models are essential to identify the existence of disease from radiological images. Earlier studies have focused on the development of Artificial Intelligence (AI) techniques using X-ray images on COVID-19 diagnosis. This paper aims to develop a Deep Learning Based MultiModal Fusion technique called DLMMF for COVID-19 diagnosis and classification from Computed Tomography (CT) images. The proposed DLMMF model operates on three main processes namely Weiner Filtering (WF) based pre-processing, feature extraction and classification. The proposed model incorporates the fusion of deep features using VGG16 and Inception v4 models. Finally, Gaussian Naive Bayes (GNB) based classifier is applied for identifying and classifying the test CT images into distinct class labels. The experimental validation of the DLMMF model takes place using open-source COVID-CT dataset, which comprises a total of 760 CT images. The experimental outcome defined the superior performance with the maximum sensitivity of 96.53%, specificity of 95.81%, accuracy of 96.81% and F-score of 96.73%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据