4.7 Article

An improved automated zebrafish larva high-throughput imaging system

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 136, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2021.104702

关键词

Zebrafish larva; High-throughput imaging; Machine vision; Micromanipulation

资金

  1. National Natural Science Foundation of China [61933008]

向作者/读者索取更多资源

This paper presents an improved high-throughput imaging system for zebrafish larvae, which enhances reliability and automation through optimized loading strategy, dynamic model establishment, and automated rotation method. The improvements significantly reduce human intervention and increase efficiency and success rates of larva imaging.
As a typical multicellular model organism, the zebrafish has been increasingly used in biological research. Despite the efforts to develop automated zebrafish larva imaging systems, existing ones are still defective in terms of reliability and automation. This paper presents an improved zebrafish larva high-throughput imaging system, which makes improvements to the existing designs in the following aspects. Firstly, a single larva extraction strategy is developed to make larva loading more reliable. The aggregated larvae are identified, classified by their numbers and patterns, and separated by the aspiration pipette or water stream. Secondly, the dynamic model of larva motion in the capillary is established and an adaptive robust controller is designed for decelerating the fast-moving larva to ensure the survival rate. Thirdly, rotating the larva to the desired orientation is automated by developing an algorithm to estimate the larva's initial rotation angle. For validating the improved larva imaging system, a real-time heart rate monitoring experiment is conducted as an application example. Experimental results demonstrate that the goals of the improvements have been achieved. With these improvements, the improved zebrafish larva imaging system remarkably reduces human intervention and increases the efficiency and success/survival rates of larva imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据