4.7 Article

Hybrid deep learning architecture for rail surface segmentation and surface defect detection

期刊

出版社

WILEY
DOI: 10.1111/mice.12710

关键词

-

资金

  1. National Natural Science Foundation of China [91738301]
  2. Research project of Beijing Shanghai High Speed Railway Company [I20D00010]

向作者/读者索取更多资源

This paper introduces a new rail boundary guidance network (RBGNet) for salient RS detection, utilizing the complementarity between RS and RE, and enhancing accuracy through high-level RS information injection and hybrid loss. Experiments show that the system achieves a high detection rate and good adaptation capability in complex environments.
Rail surface defects (RSDs) are a major problem that reduces operation safety. Unfortunately, the existing RSD detection systems have very limited accuracy. Current image processing methods are not tailored for the railway track and many fully convolutional networks (FCN)-based methods suffer from the blurry rail edges (RE). This paper proposes a new rail boundary guidance network (RBGNet) for salient RS detection. First, a novel architecture is proposed to fully utilize the complementarity between the RS and the RE to accurately identify the RS with well-defined boundaries. The newly developed RBGNet injects high-level RS object information into shallow RS edge features by a progressive fused way for obtaining fine edge features. Then, the system integrates the refined edge features with RS features at different high-level layers to predict the RS precisely. Second, an innovative hybrid loss consisting of binary cross entropy (BCE), structural similarity index measure (SSIM), and intersection-over-union (IoU) is proposed and equipped into the RBGNet to supervise the network and learn the transformation between the input and ground truth. The input and ground truth then further refine the RS location and edges. Conveniently, an image-based model for RSD detection and quantification is also developed and integrated for an automatic inspection purpose. Finally, experiments conducted on the complex unmanned aerial vehicle (UAV) rail dataset indicate the system can achieve a high detection rate with good adaptation capability in complicated environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据