4.7 Article

A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2021.113741

关键词

Artificial neural network; Physics-informed deep learning; Inversion; Transfer learning; Linear elasticity; Elastoplasticity

资金

  1. KFUPM-MIT collaborative agreement Multiscale Reservoir Science, United States of America

向作者/读者索取更多资源

This study presents the application of Physics Informed Neural Networks (PINN) in solid mechanics, improving accuracy and convergence with a multi-network model and Isogeometric Analysis. The study demonstrates the importance of honoring physics in improving robustness and highlights the potential application of PINN in sensitivity analysis and surrogate modeling.
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations into PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through an example that showcases von Mises elastoplasticity. While common PINN algorithms are based on training one deep neural network (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To validate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We study convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence characteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework for transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the physics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately predict the solution for a wide range of parameters new to the network-thus pointing to an important application of this framework to sensitivity analysis and surrogate modeling. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据