4.5 Article

Tuning nanoscale adhesive contact behavior to a near ideal Hertzian state via graphene coverage

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 194, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2021.110427

关键词

Adhesive contact; Hertzian contact theory; Multilayer graphene-coating; In-plane straining; Size effect; Molecular statics simulation

资金

  1. Fundamental Research Funds for the Central Universities, China [WK2480000006]
  2. Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments

向作者/读者索取更多资源

The study shows that the influence of adhesion between the substrate and indenter can be reduced by adjusting the adhesion strength and range, or enhancing the substrate stiffness. The elastic response of the substrate becomes weaker after coating graphene layers on both sides of the interface.
We carry out molecular statics (MS) simulations to study the indentation process of Pt (1 1 1) surfaces using an indenter with the radius of 5-20 nm. The substrate and indenter surfaces are either bare or graphene-covered. Our simulations show that the influence of the adhesion between the bare substrate and indenter tip can be significantly reduced by decreasing the adhesion strength and adhesion range between the atoms on the substrate and indenter, or by enhancing the substrate stiffness. Our results suggest that the elastic response of the substrate exhibits weaker adhesion after the coating of graphene layers on either side of the contacting interface, which is attributed to the weak interaction between the graphene layers. Based on these principles obtained for the bare substrate, the nanoscale contact behavior of the substrate can be tuned into a near-ideal Hertzian state by increasing the number of graphene layers, applying pre-strains to graphene on substrate, or using large indenters. Therefore, even for strong adhesion between tip, graphene, and substrate, mechanical properties of substrate can be determined by nanoindentation using graphene coverage. Our research provides theoretical guidance for designing adhesion-less coatings for AFM probes and MEMS/NEMS systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据