4.7 Article

Highly stretchable porous composite hydrogels with stable conductivity for strain sensing

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 213, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2021.108968

关键词

Graphene and other 2D-materials; Polymer-matrix composites; Electrical properties; Mechanical properties; Sensing

资金

  1. National Natural Science Foundation of China [51373038]

向作者/读者索取更多资源

A highly stretchable porous composite hydrogel with excellent mechanical properties and conductivity has been developed using graphene oxide-stabilized Pickering foam templates, allowing for detection of various human motions. The easy preparation process and outstanding performance of these porous composite hydrogels facilitate the development of flexible wearable strain sensing materials.
Stretchable hydrogels have undergone a rapid development in recent years particularly for wearable strain sensors. However, most of hydrogel-based sensors exhibit poor mechanical properties. Here, we report a highly stretchable porous composite hydrogel that has a tensile strain of 400% and a compressive strain of 80%. The porous hydrogel is composed of polyvinyl alcohol (PVA) and copolymer of N-(3-sulfopropyl)-N-methacroyloxyethyl-N,N-dimethylammonium betaine (SBMA) and acrylamide (AM) prepared via graphene oxide (GO)-stabilized Pickering aqueous foam templates. The pore morphology of the composite hydrogels was observed by field emission scanning electron microscope (FE-SEM). The tensile and compressive curves of porous hydrogels with different GO concentrations were characterized. GO can act as Pickering stabilizer to produce aqueous foams and also construct the physical cross-linking network in porous hydrogels to improve their mechanical strength. In addition, when GO is reduced by L-ascorbic acid, it provides effective electric pathways in porous hydrogels with the conductive percolation of less than 0.40 wt%. The composite hydrogels thus exhibit excellent strain sensitivity and can be used to detect various human motions. The facile preparation process of the porous composite hydrogels with outstanding performance properties facilitates the development of flexible wearable strain sensing materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据