4.7 Article

Digital volume correlation for meso/micro in-situ damage analysis in carbon fiber reinforced composites

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 213, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2021.108944

关键词

Polymer-matrix composites (PMCs); Damage mechanics; X-ray computed tomography; Digital volume correlation

资金

  1. KU Leuven Research Council [C24/17/052]
  2. FWO Postdoc Fellowship, project ToughImage [1263421N]
  3. European Union's Horizon 2020 research and innovation program under the Marie SkodowskaCurie grant [722626]
  4. KU Leuven XCT Core Facility
  5. Toray Chair for Composite Materials at KU Leuven

向作者/读者索取更多资源

This study explores the potential of Digital Volume Correlation (DVC) in detecting and characterizing damage in fiber-reinforced composites using in-situ X-ray Computed Tomography. Through preliminary analysis of digital deformation images and real-deformation images acquired during in-situ tensile loading, DVC proves to be a promising tool for quantification of deformation and damage at both mesoscale and microscale levels. Damage mechanisms in fiber-reinforced composites are successfully detected and characterized using DVC, showing the limitations of traditional methods like grayscale thresholding.
Recently, in-situ X-ray Computed Tomography (CT) has shown its potential for 3D damage analysis in composite materials. However, the characterization of damage in X-ray tomograms is not always straightforward, and it requires post-processing of the 3D images. In this study, we explore the potential of Digital Volume Correlation (DVC) for the detection and characterization of damage in fiber-reinforced composites, where fibers provide the required 3D speckle pattern. Preliminary analysis via digital deformation of 3D images is performed to verify the applicability of DVC for quantification of deformation and damage in a carbon/epoxy laminate and to estimate the measurement errors. Then, real-deformation images, acquired with synchrotron CT during in-situ tensile loading of the laminate, are analyzed with DVC to detect different damage mechanisms. A rough analysis is performed at the mesoscale using subset-based DVC, followed by a more detailed investigation at the microscale via finite-element-based DVC. Damage appears in the DVC strain fields as local strain magnification. Crack opening displacement can be estimated reliably via the jumps in displacement fields. DVC proves to be a promising tool for damage characterization in X-ray tomograms of fiber-reinforced composites, especially when simple methods such as grayscale thresholding are not adequate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据