4.7 Article

Effect of compatibilizer and fiber loading on ensete fiber-reinforced HDPE green composites: Physical, mechanical, and morphological properties

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 213, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2021.108937

关键词

Ensete fiber; Polymer composite; Compatibilizer; Mechanical properties; Drop weight impact

向作者/读者索取更多资源

This study is the first attempt to develop Ensete fiber-HDPE composite by improving the compatibility between the materials. Increasing fiber loading resulted in stiffer and harder composites with decreased elongation at break. The addition of a compatibilizer improved fiber-matrix adhesion, increasing tensile strength, flexural strength, and impact absorption energy of the composite.
Ensete fiber is a natural material extracted from E. ventricosum plants which is widely cultivated for food. This study is the first attempt to develop its composite by improving its compatibility with high density polyethylene (HDPE). The premixed composite constituents were melt-compounded by twin-screw extrusion and granulated. Composite plates were molded using hot-press machine. The effect of grafting maleic anhydride to HDPE and varying fiber loading on composite properties were investigated. Increasing ensete fiber loading has resulted in the composites being stiffer and harder leading to a decrease in its elongation at break. The addition of 5 wt% compatibilizer into 25 wt% ensete fiber-filled HDPE improved the fiber-matrix adhesion. Its tensile strength, flexural strength and impact absorption energy increased by nearly 43%, 46%, and 56% respectively when compared to composites with the same fiber loading and without compatibilizer. Morphological analysis from microscopic images of tensile fracture surfaces enlightened the interfacial adhesion to support these test results. The composites density, water absorption and melt flow index were also compared. The results show that ensete fiber-HDPE composite could be used as construction and building materials, low-density furniture, and moldable structures in need of design flexibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据