4.7 Article

Experimental and kinetic study on the pyrolysis and oxidation of isopentane in a jet-stirred reactor

期刊

COMBUSTION AND FLAME
卷 235, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2021.111678

关键词

Isopentane; Jet-stirred reactor; Pyrolysis; Oxidation; Chemical kinetics

资金

  1. National Natural Science Foundation of China [52022058, 51776124, 51861135303]
  2. Shanghai Science and Technology Committee [19160745400]

向作者/读者索取更多资源

An experimental and kinetic study on the pyrolysis and oxidation of isopentane was conducted using a jet-stirred reactor at various conditions. Three literature kinetic models were employed and modified to improve predictions on fuel species and ignition delay times. The results revealed sensitivity of fuel consumption and oxidation reactivity to specific reactions and temperature ranges.
An experimental and kinetic study on the pyrolysis and oxidation of isopentane (2-methylbutane) were conducted in this work. The experiments were performed in a jet-stirred reactor (JSR) at the equivalence ratios of 0.5, 1.0, 2.0 and infinity , across the temperature range from 700 to 1100 K, and at atmospheric pressure. Mole fractions of oxygen, hydrogen, CO, CO 2 , C 1 -C 6 hydrocarbons and methanol were measured using a gas chromatograph (GC), at the initial fuel mole fraction of 0.5% and residence time at 2 s. Three literature kinetic models, named as the Bugler model, the NUIGMech1.1 model, and the LLNL model, were employed to predict the speciation profiles measured in this work, and the ignition delay times in the literature. Based on the model performances and kinetic analysis, some modifications were made to the LLNL model, by supplementing the beta-scission reaction aC 5 H 11 = C 4 H 8 -1 + CH 3 , and updating the rate constants for the reactions iC 5 H 12 + OH = cC 5 H 11 + H 2 O, iC 5 H 12 + OH = bC 5 H 11 + H 2 O, C 3 H 4 -a = C 3 H 4 p, C 3 H 4 -a + H = C 3 H 4 -p + H, and C 2 H 6 + CH 3 = C 2 H 5 + CH 4 . After the modifications, the model predictions on mole fractions of 1-butene, ethane, allene and propyne in JSR pyrolysis and oxidation were improved, and the overestimations on the ignition delay times at low temperatures are significantly reduced. Reaction pathway and sensitivity analyses were carried out using the modified model. The results indicated that fuel consumption in pyrolysis is sensitive to the unimolecular decomposition reaction iC 5 H 12 = iC 3 H 7 + C 2 H 5 across the temperature range of 90 0-110 0 K. In addition, fuel low-temperature oxidation reactivity is sensitive to the mutual conversion between HO 2 and H 2 O 2 , while the competition between OH and HO 2 formation has a more pronounced effect at increased temperatures. (c) 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据