4.6 Article

Size effect of graphene oxide sheets on enantioseparation performances in membrane separation

出版社

ELSEVIER
DOI: 10.1016/j.colsurfa.2021.126464

关键词

Graphene oxide; Lateral sizes; Enantioseparation; Membrane separation

资金

  1. National Natural Science Foundation of China [21576079, 91834301]
  2. 111 Project of Ministry of Education of China [B08021]
  3. Fundamental Research Funds for the Central Universities of China

向作者/读者索取更多资源

The size of graphene oxide sheets plays a crucial role in the enantioselectivity of membrane separation. Larger lateral size of GO sheets can result in better chiral separation performance. Functionalizing GO sheets with chiral selectors can enhance the enantiomer permeability and selectivity.
Recently, graphene oxide (GO)-based membranes have been demonstrated to be a potential candidate for gas purification and liquid separation techniques owing to their large surface area, tunable interactive sites, and adjustable interlayer spacing. Notably, GO-based membranes functionalized with chiral selectors have been demonstrated to possess high enantiomer permeability and impressive permeation selectivity toward enantiomeric target guests. However, the influence of the GO sheet size on the separation performance remains unclear. Here, we investigated the effect of the lateral size on the enantioseparation performances by modifying a chiral selector onto GO flakes with different sizes, considering that GO membranes possess an inherently high throughput character. In this work, three GO sheets with mean lateral sizes (similar to 60, 650 and 4100 nm) were prepared, hereafter defined as GO1, GO2, and GO3, respectively. Then, a chemical modification of GO1, GO2 and GO3 with a chiral selector, L-Phenylalanine (L-Phe), yielded the corresponding L-Phe grafted GO sheets, L-Phe-GO1, L-Phe-GO2 and L-Phe-GO3. Finally, L-Phe-GO1, L-Phe-GO2 and L-Phe-GO3 membranes derived from a simple vacuum filtration method were employed to separate D-/L-phenylalanine. Results show that the L-Phe-GO3 based membrane allows for a remarkable chiral separation capacity, having a greatest enantioselectivity among three L-Phe-GO membranes with different lateral GO sizes. Our findings illustrate that the sheet size of GOs plays a dominant role in the enantioselectivity of membrane separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据