4.5 Article

Morphological effect on electrochemical performance of nanostructural CrN*

期刊

CHINESE PHYSICS B
卷 30, 期 12, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1674-1056/ac1f07

关键词

CrN; supercapacitors; metal nitride; nanostructures

向作者/读者索取更多资源

Different nanostructures of CrN material were prepared and studied for their performance in supercapacitors. Results showed that CrN microspheres exhibited the best specific capacitance, cyclic stability, energy density, and power density, mainly due to their high conductance and specific surface area. This work presents a general strategy of fabricating controllable CrN nanostructures to achieve enhanced supercapacitor performance.
Size and morphology are critical factors in determining the electrochemical performance of the supercapacitor materials, due to the manifestation of the nanosize effect. Herein, different nanostructures of the CrN material are prepared by the combination of a thermal-nitridation process and a template technique. High-temperature nitridation could not only transform the hexagonal Cr2O3 into cubic CrN, but also keep the template morphology barely unchanged. The obtained CrN nanostructures, including (i) hierarchical microspheres assembled by nanoparticles, (ii) microlayers, and (iii) nanoparticles, are studied for the electrochemical supercapacitor. The CrN microspheres show the best specific capacitance (213.2 F/g), cyclic stability (capacitance retention rate of 96% after 5000 cycles in 1-mol/L KOH solution), high energy density (28.9 Wh/kg), and power density (443.4 W/kg), comparing with the other two nanostructures. Based on the impedance spectroscopy and nitrogen adsorption analysis, it is revealed that the enhancement arised mainly from a high-conductance and specific surface area of CrN microspheres. This work presents a general strategy of fabricating controllable CrN nanostructures to achieve the enhanced supercapacitor performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据