4.5 Article

Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities

期刊

CHINESE PHYSICS B
卷 31, 期 1, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1674-1056/ac0e28

关键词

surface plasmon polaritons; coupled resonators; multiplexing

资金

  1. National Natural Science Foundation of China [11764006]

向作者/读者索取更多资源

This study investigates coupled cavities in metal-insulator-metal bus waveguides through finite difference time domain method and coupled-mode theory. The resonant modes of surface plasmon polaritons split with decreasing thickness of the middle baffle. By adjusting the coupling strength, the resonant wavelength of the positive coupling mode can be tuned, allowing for control of SPPs propagation. This has significant implications for designing more compact optical devices.
Resonance cavity is a basic element in optics, which has wide applications in optical devices. Coupled cavities (CCs) designed in metal-insulator-metal (MIM) bus waveguide are investigated through the finite difference time domain method and coupled-mode theory. In the CCs, the resonant modes of the surface plasmon polaritons (SPPs) split with the thickness decreasing of the middle baffle. Through the coupled-mode theory analysis, it is found that the phase differences introduced in opposite and positive couplings between two cavities lead to mode splitting. The resonant wavelength of positive coupling mode can be tuned in a large range (about 644 nm) through adjusting the coupling strength, which is quite different from the classical adjustment of the optical path in a single cavity. Based on the resonances of the CCs in the MIM waveguide, more compact devices can be designed to manipulate SPPs propagation. A device is designed to realize flexible multiple-wavelength SPPs routing. The coupling in CC structures can be applied to the design of easy-integrated laser cavities, filters, multiple-wavelength management devices in SPPs circuits, nanosensors, etc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据