4.7 Article

Alternating current-enhanced carbon nanotubes hollow fiber membranes for membrane fouling control in novel membrane bioreactors

期刊

CHEMOSPHERE
卷 277, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130240

关键词

Alternating current; EMBR; EPS; Membrane fouling; Wastewater treatment

资金

  1. LiaoNing Revitalization Talents Program [XLYC1807067]
  2. Programme of Introducing Talents of Discipline to Universities [B13012]

向作者/读者索取更多资源

Applying alternating current voltage on CNTs-HFMs can effectively reduce membrane fouling rate and improve the performance of wastewater treatment systems. The AC potential helps to reduce the binding of pollutants on the membrane, lower pollution levels, and decrease EPS concentration in biomass, thereby suppressing membrane fouling.
A novel electro-assisted membrane bioreactor (EMBR) was built up with alternating current (AC) voltage applying on carbon nanotubes hollow fiber membranes (CNTs-HFMs) as the basic separation unit (AC-EMBR). Herein, a combination effect of electrostatic repulsion, electrochemical oxidation and translational motion behaviors was used to mitigate membrane fouling with +1.0 V for 1 min and -1.2 V for 1 min repeatedly applying on CNTs-HFMs. During the 73-day operation, the CNTs-HFMs in AC-EMBR exhibited a superior antifouling capability with a lower average fouling rate of 0.017 bar/d comparing to control groups, which were 0.021 bar/d in EMBR with CNTs-HFMs as cathode (C-EMBR), 0.025 bar/d in EMBR with CNTs-HFMs as anode (A-EMBR) and 0.029 bar/d in MBR without voltage, respectively. The AC potential led pollutants to loosely attach on membranes, which reduced irreversible fouling as well as reduced unrecoverable fouling levels. Bound extracellular polymeric substances (EPS) concentration in biomass of AC-EMBR was lower than those in the other reactors, which also contributed to suppressing membrane fouling. Meanwhile, an excellent effluent quality was obtained in AC-EMBR with COD removal rate higher than 96% and effluent NH4+-N concentration lower than 2 mg/L. Microbial community diversity has been promoted by AC electric field according to the microbial community analysis. The results of this study suggested the effectiveness of utilizing AC for membrane fouling mitigation and wastewater treatment in MBR systems. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据