4.7 Article

Chlorella vulgaris phycoremediation at low Cu+2 contents: Proteomic profiling of microalgal metabolism related to fatty acids and CO2 fixation

期刊

CHEMOSPHERE
卷 284, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.131272

关键词

Microalgae; Copper bioremediation; Value-added products; CO2 fixation; Proteome

资金

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2013/50218-2]
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  3. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)

向作者/读者索取更多资源

This study aimed to investigate the correlation between metabolic changes and copper ions (Cu+2) bioremediation by microalgae C. vulgaris 097 CCMA-UFSCar at low Cu+2 content. The results showed that even at low concentrations, Cu+2 had a significant negative impact on C. vulgaris growth, leading to proteome changes related to fatty acid biosynthesis and carbon fixation. The analysis of C. vulgaris proteomic data indicated drastic metabolic changes at low concentrations of Cu+2.
The aim of this work was to correlate metabolic changes with copper ions (Cu+2) bioremediation by microalgae C. vulgaris 097 CCMA-UFSCar at low Cu+2 content. The metabolic effects include proteome changes related to fatty acid biosynthesis (value-added product) and carbon fixation (climate change mitigation). Cu+2, even at low concentration, showed a significant negative impact on C. vulgaris growth. The microalgal bioremediation reached 100, 74, 38 and 26% for Cu+2 content at 0.1; 0.3; 0.6 and 0.9 mg L-1, respectively. Regarding proteomics, the numbers of proteins reduced (approximate to 37%) from 581 proteins (control) to 369 proteins (0.9 mg of Cu+2 L-1) compared to control. The microalgal CO2 fixation is strictly related to the Calvin cycle, particularly phase 1, in which ribulose bisphosphate carboxylase large chain (RuBisCO) produces two phosphoglycerate molecules from CO2 and ribulose 1,5-bisphosphate. Then, phosphoglycerate can be metabolically reduced into glucose. When compared to control, the RuBisCO was underexpressed (approximate to 50%). Similar changes in proteomic profiling of metabolism-related to fatty acid biosynthesis was observed. Nevertheless, no protein was found for the cultivation at 0.9 mg of Cu+2 L-1. Thus, the analysis of C. vulgaris proteomic data indicated that even at low concentration, Cu+2 lead to drastic metabolic changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据