4.7 Article

Metal dissociation from humic colloids: Kinetics with time-dependent rate constants

期刊

CHEMOSPHERE
卷 275, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130045

关键词

Colloids; Desorption; Humic complexes; Kinetic model; Metal binding; Natural organic matter

资金

  1. German Federal Ministry for Economic Affairs and Energy (BMWi) [02E11415B]

向作者/读者索取更多资源

The study describes the slow kinetics of multivalent metal dissociation from humic substances, which is further impeded with increasing time of contact. Findings from isotope exchange experiments suggest that the time dependence of dissociation can be fully described by a complex two-site approach.
The mobility of contaminant metals in aqueous subsurface environments is largely controlled by their interaction with humic substances as colloidal constituents of Dissolved Organic Matter. Transport models for predicting carrier-bound migration are based on a competitive partitioning process between solid surface and colloids. However, it has been observed that dissociation of multivalent metals from humic complexes is a slow kinetic process, which is even more impeded with increasing time of contact. Based on findings obtained in isotope exchange experiments, the convoluted time dependence of dissociation was fully described by a complex two-site approach, integrating rate constants that are in turn time-dependent. Thus, this study presents the treatment of a particular phenomenon: kinetics within kinetics. The analysis showed that the inertization process does not lead to irreversible binding. Consequently, thermodynamic concepts using equilibrium constants remain applicable in speciation and transport modeling if long time frames are appropriate. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据