4.7 Article

Salinity-induced fluorescent dissolved organic matter influence co-contamination, quality and risk to human health of tube well water, southeast coastal Bangladesh

期刊

CHEMOSPHERE
卷 275, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130053

关键词

Trace metals; PARAFAC modeling; Groundwater quality; Salinity induced-FDOM; Mobilization of trace metals

资金

  1. Research Cell, Noakhali Science & Technology University, Noakhali, Bangladesh

向作者/读者索取更多资源

Salinity in coastal Bangladesh's drinking water poses a severe crisis in socio-economic, environmental, and human health safety. The study analyzed tube well water samples for trace metals and found that salinity-induced FDOM influences water quality and health risks, especially for children.
Salinity in the drinking water of coastal Bangladesh results from a severe socio-economic, environmental and human health safety crisis. In this paper, we analyzed 120 tube well water samples from southeast coastal Bangladesh for eight trace metals (TMs). Contamination, quality and risk of TMs to human health of tube well water influenced by salinity-induced fluorescent dissolved organic matter (FDOM) were assessed using multiple pollution indices, GWquality index (GWQI), traditional health risk, and PARAFAC models. The mean values of EC, Fe, Cd, Cr, and As surpassed the limit set by local and international standards with significant spatial variations. The results of the GWQI showed that 52.5% of the samples were within the moderate-poor quality range in the study region. PARAFAC modeling identified three groundwater FDOM constituents with a coupling of humic acid (HA), fulvic acid (FA), and degraded fulvic acid (DFA)-like substances. Moreover, the positive correlations among EC, TMs, HA, FA, and DFA proved that salinity-induced FDOM had significant contributions to the dissolution potential of contaminants in the aquifer, hence increased the mobilization of TMs. Health risk models suggested that children are more susceptible to the non-carcinogenic and carcinogenic risks than adults at the community level. The carcinogenic risks of Cd, As, Pb, and Cr via oral exposure pathway indicated the highest carcinogenic risks for both adults and children. The findings also indicated that the salinity-derived FDOM-TMs complex is the key driver to groundwater co-contaminations and elevated health impacts. Besides, high concentrations of Fe and As are the key causal issues for sustainable water safety. Thus, strict water management and monitoring plans require preventing these contaminants for sustainable community well-being in the coastal region. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据