4.7 Article

Tuning the reactivity of tri-s-triazine, trinitro-tri-s-triazine and ternary tri-s-triazine graphitic C3N4 quantum dots through H-functionalized and B-doped complexes: A density functional study

期刊

CHEMOSPHERE
卷 272, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.129901

关键词

G-C3N4; Absorption spectra; Electrical properties; Electron-hole interaction; Quantum dots

资金

  1. Rashtriya Uchchatar Shiksha Abhiyan (RUSA) program

向作者/读者索取更多资源

Modifying structures and doping in g-C3N4 quantum dots have been proven effective in tuning their properties. Functionalizing tri-s-triazine and tri-nitro tri-s-triazine structures with hydrogen improves their planarity and reactivity, with additional B doping further enhancing these properties. The study suggests that highly reactive sheets can potentially be used for removing hazardous ions and molecules from industrial waste.
Modifying the structures and doping are proven to be effective methods to tune the structural and electrical properties of g-C3N4 quantum dots. Hence, in this study, tri-s-triazine and tri-nitro tri-s-triazine have been studied by functionalizing their edges with hydrogen. The H-functionalized tri-nitro tri-striazine quantum dot displays a buckled structure with a band gap of 1.988 eV, whereas the tri-s-triazine demonstrates a planner structure with a band gap of 1.636 eV. The obtained results have been compared with the previous results. The absorbance spectrum of H-functionalized trinitro tri-s-triazine falls under the visible region with a peak value of 488 nm, and the absorption spectrum of tri-s-triazine falls at 790 nm. The planarity of the tri-nitro tri-s-triazine structure is improved by doping the B atom in the N site, and the band gap of H-functionalized B doped tri-nitro tri-s-triazine is 1.143 eV. The absorbance spectrum of H-functionalized B doped tri-nitro tri-s-triazine is 508 nm. The reactivity of the structure is increased by doping B atoms, and it is confirmed by the electrophilicity index. Similarly, the H-functionalized B doped tri-s-triazine exhibits a band gap of 1.328 eV. Further, the tri-s-triazine structures are arranged in ternary form, and the properties are studied by increasing the number of B atoms in the tri-striazine rings. The outcome presents that the structures are planar, and band gap values are reduced further. Also, the reactivity of the sheets is increased, which is confirmed by the electrophilicity index. It is proposed that the sheets with a high reactivity can be used for the removal of hazardous ions and molecules from the industrial wastage. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据