4.7 Article

Effects of suspended particulate matter from natural lakes in conjunction with coagulation to tetracycline removal from water

期刊

CHEMOSPHERE
卷 277, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130327

关键词

Suspended particulate matter; Tetracycline; Adsorption; Coagulation; Influencing factors

资金

  1. Fundamental Research Funds for the Central Universities [2632018FY02, 2632018FY01]
  2. National Found for Fostering Talents of Basic Science [J1310032]

向作者/读者索取更多资源

The study demonstrated that utilizing SPM from natural lakes in the coagulation process could potentially remove TC in water, with higher SPM concentrations leading to better TC removal. The addition of coagulant aid polyacrylamide resulted in unchanged TC removal, significantly reduced effluent turbidity, and low TC desorption.
Coagulation is a common method used to remove suspended particulate matter (SPM) from the water supply. SPM has preferable adsorption ability for antibiotics in water; therefore, SPM adsorption and coagulation may be a possible way to remove tetracycline (TC) from water. This study carried out coagulation experiments combining SPM collected from a natural lake at a location with three common coagulants-dpolyaluminum sulfate, polyaluminum chloride, and polyferric sulfate-dunder different pH values, exploring the adsorption of TC by SPM, coagulation of SPM with TC, and the primary influencing factors of this process. The maximum removal rate of TC can reach 97.87% with an SPM concentration of 1000 mg/L. Multi-factor analysis of variance showed the importance of various TC removal factors, which were ranked as follows: SPM concentration[ initial TC concentration > type of coagulant > pH values. The higher the SPM concentration, the better the TC removal (p < 0.001). Fourier infrared spectroscopy results demonstrated the strong adsorption effect of SPM on TC after being combined with a coagulant, and scanning electron microscopy also indicated that SPM becomes effective nuclei in the coagulation process, which is a possible reason for better TC removal. However, the effluent turbidities under 1000 mg/L SPM concentrations were high without coagulant aid. With the addition of coagulant aid anion polyacrylamide, the TC removal remained unchanged, effluent turbidity significantly reduced, and the TC desorption became low. These results indicate that applying SPM from natural lakes in the coagulation process could potentially remove TC in water. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据