4.7 Article

Tebuconazole-induced toxicity and the protective effect of Ficus carica extract in Neotropical fruit-eating bats

期刊

CHEMOSPHERE
卷 275, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.129985

关键词

Fungicide; Ecotoxicology; Oxidative stress; Histopathology; Testosterone; Artibeus lituratus

资金

  1. National Council of Scientific and Technological Development (CNPq)
  2. Coordination for the Improvement of Higher Education Personnel (CAPES)

向作者/读者索取更多资源

The fungicide TEB induces oxidative stress in Neotropical fruit-eating bats, resulting in liver damage and hormonal imbalance. Co-administration of the F. carica plant extract attenuates some oxidative stress responses and liver damage in exposed bats.
Tebuconazole (TEB) is a triazole fungicide widely used in agriculture known to cause metabolic and endocrine disorders in mammals. Several plant extracts have shown to be beneficial against pesticide effects due to their hepatoprotective, antioxidant and anti-inflammatory properties. As fruit bats play a critical role in rainforest regeneration and are constantly exposed to pesticides, we aimed at evaluating TEB-induced toxicity and the possible protective effect of the Ficus carica plant extract in Neotropical fruit-eating bats (Artibeus lituratus). Bats were captured and assigned to 4 experimental groups, offered: 1) CTL (n = 6): papaya; 2) DMSO (n = 6): papaya treated with 1.25% dimethyl sulfoxide (DMSO); 3) TEB (n = 6): papaya treated with tebuconazole (commercial formulation) 0.1%; and 4) TEBFC (n = 6): papaya treated with tebuconazole 0.1% and Ficus carica extract (20%) in DMSO (1.25%). After seven days of exposure, TEB bats showed increased lipid peroxidation, increased superoxide dismutase (SOD) and catalase (CAT) activities, vascular congestion and inflammatory infiltrate in the liver, and increased serum transaminase enzyme activities. We found the same alterations in oxidative stress parameters in the breast muscles of TEB-exposed bats. In the testes, all oxidative stress markers were increased in TEB bats and corroborate findings of histopathological and increased serum testosterone levels observed following TEB exposure. The co-administration of the fungicide with the F. carica plant extract attenuated most oxidative stress markers in exposed bats' liver and testes and decreased liver damage, but failed to revert the steroid imbalance caused by the fungicide exposure. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据