4.6 Article

Segregated Protein-Cucurbit[7]uril Crystalline Architectures via Modulatory Peptide Tectons

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 27, 期 59, 页码 14619-14627

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.202103025

关键词

biomaterials; coiled-coils; crystal engineering; intrinsically disordered peptide capture; macrocycles

资金

  1. NUI Galway, NUI Traveling Studentship
  2. Irish Research Council [GOIPD/2019/513]
  3. Science Foundation Ireland [13/CDA/2168, SSPC-PharM5 12/RC/2275_P2]
  4. IReL

向作者/读者索取更多资源

This study describes the modulation of protein assemblies mediated by cucurbituril through the inclusion of peptide tectons. By fusing different peptides to RSL, the researchers were able to create layered materials with varying porosity, showcasing the modularity of protein-cucurbituril architectures. This approach adds a new dimension to macrocycle-mediated protein assembly and could potentially lead to the development of new types of materials with segregated protein crystals.
One approach to protein assembly involves water-soluble supramolecular receptors that act like glues. Bionanoarchitectures directed by these scaffolds are often system-specific, with few studies investigating their customization. Herein, the modulation of cucurbituril-mediated protein assemblies through the inclusion of peptide tectons is described. Three peptides of varying length and structural order were N-terminally appended to RSL, a beta-propeller building block. Each fusion protein was incorporated into crystalline architectures mediated by cucurbit[7]uril (Q7). A trimeric coiled-coil served as a spacer within a Q7-directed sheet assembly of RSL, giving rise to a layered material of varying porosity. Within the spacer layers, the coiled-coils were dynamic. This result prompted consideration of intrinsically disordered peptides (IDPs) as modulatory tectons. Similar to the coiled-coil, a mussel adhesion peptide (Mefp) also acted as a spacer between protein-Q7 sheets. In contrast, the fusion of a nucleoporin peptide (Nup) to RSL did not recapitulate the sheet assembly. Instead, a Q7-directed cage was adopted, within which disordered Nup peptides were partially captured by Q7 receptors. IDP capture occurred by macrocycle recognition of an intrapeptide Phe-Gly motif in which the benzyl group was encapsulated by Q7. The modularity of these protein-cucurbituril architectures adds a new dimension to macrocycle-mediated protein assembly. Segregated protein crystals, with alternating layers of high and low porosity, could provide a basis for new types of materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据