4.7 Article

Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4

期刊

CHEMICAL ENGINEERING JOURNAL
卷 428, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.132531

关键词

H2O2 production; Photocatalysis; g-C4N3; Cyano group; SnO2 nanocrystal

资金

  1. National Key R&D Program of China [2018YFC1903201]

向作者/读者索取更多资源

In this study, the photocatalytic properties of g-C3N4 for H2O2 production were enhanced by co-modification with cyano group and SnO2 nanocrystal. The modified g-C3N4 showed excellent performance with a H2O2 yield rate of 703.4 mu M g(-1)h(-1) under visible light illumination, indicating a promising approach to improve the photocatalytic activity of g-C3N4.
Light-driven molecular oxygen reduction to H2O2 from water is an emerging environmentally friendly approach that can convert solar energy into green chemical. In this work, the photocatalytic properties of g-C3N4 for H2O2 production was enhanced by co-modification with cyano group and SnO2 nanocrystal through a facile one-step thermal polymerization method. The cyano group and SnO2 nanocrystal broaden the photo-absorption range of g-C3N4, enhance the electron generation and transfer ability, and provide more active sites for O-2 and H+ adsorption. Significantly, this structure modification strategy leads to excellent H2O2 production performance, and the H2O2 yield rate reaches 703.4 mu M g(-1)h(-1) under visible light illumination, which is superior among gC(3)N(4)-based photocatalysts. Moreover, the reaction mechanism study indicates that the photocatalytic H2O2 production proceeds through a two-step single-electron reaction and the catalyst shows good cyclability for long-term use. This work demonstrates a novel and feasible modification approach to improve the photocatalytic activity of g-C3N4, and will promote the development of advanced semiconducting catalysts for photocatalytic H2O2 evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据