4.7 Article

Dual-responsive graphene hybrid structural color hydrogels as visually electrical skins

期刊

CHEMICAL ENGINEERING JOURNAL
卷 415, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.128978

关键词

Structural color; Electrical skin; rGO; Responsive; Conductivity

资金

  1. National Key Research and Development Program of China [2020YFA0908200]
  2. National Natural Science Foundation of China [52073060, 61927805]
  3. Natural Science Foundation of Jiangsu [BE2018707]

向作者/读者索取更多资源

Stimuli-responsive materials, particularly the novel dual-responsive graphene hybrid structural color film, are showing great potential in the field of flexible electronics by changing color and conductivity in response to external stimuli.
Stimuli-responsive materials have been experiencing explosive developments, which are functionally integrated with multi-signals in response to external environment variations. Here, we present a novel dual-responsive graphene hybrid structural color film as electronic skins. The film is fabricated by adding conductive reduced graphene oxide (rGO)-poly(N-isopropylacrylamide) (PNIPAM) filler into a poly(ethyleneglycol) diacrylate (PEGDA) inverse opal scaffold. The inverse opal scaffold imparts the film with brilliant structural color and the addition of rGO endows the hybrid film with excellent conductivity. Because of the temperature response adjustability of the PNIPAM polymer, the resultant film is capable of changing volume or internal nanostructure under temperature stimuli. In addition, benefiting from the extraordinary near-infrared (NIR) photo-thermal transformation property of rGO, such hybrid films with temperature-sensitive polymer components could be introduced with photo-responsive properties. Based on these features, the hybrid film could not only feed electrical signals back, but also exhibit color changes visually when responding to the temperature and NIR stimuli. Furthermore, the value of the hybrid film on electro-thermal conversions has been explored. These features indicate that the hybrid conductive structural color films possess the promising application prospects in flexible electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据