4.7 Article

Highly tough, stretchable and resilient hydrogels strengthened with molecular springs and their application as a wearable, flexible sensor

期刊

CHEMICAL ENGINEERING JOURNAL
卷 415, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.128839

关键词

Hydrogels; Mechanical properties; Resilience; Peptide; alpha-helix; Wearable

资金

  1. National Natural Science Foundation of China [52073146, 51625302, 51873091, 52033004]

向作者/读者索取更多资源

By introducing helical peptide chains into hydrogel networks using peptide crosslinkers, the synthetic hydrogels achieve significantly improved mechanical strength and extensibility, solving the dilemma of designing a gel with both high toughness and resilience.
Numerous mechanically strong synthetic hydrogels have been developed in recent years; however, few of them are both tough and resilient like living tissues such as muscles. The intrinsically contradictory requirements for toughness and resilience make it a big challenge to design a gel with both high toughness and high resilience. To solve the problem here helical peptide chains are introduced into hydrogel networks by crosslinking the gel with peptide crosslinkers. The resulting hydrogel networks have a reduced inhomogeneity because of the low concentration and large size of the peptide crosslinkers. In addition, under stress the helical chains can be stretched to elongated ones and the intramolecular hydrogen bonds stabilizing the helical structures will be broken, providing a novel mechanism for energy dissipation. Therefore, the peptide-crosslinked hydrogels present significantly improved mechanical strength and extensibility. Unlike the previously used mechanisms for energy dissipation, here the intramolecular hydrogen bonds and hence the helical structure reform instantly when unloaded, leading to a small hysteresis loop and high resilience (>94%). The helical peptide chains in the network act like molecule-sized springs, absorbing and storing mechanical energy when deformed but releasing it when the stress is removed. Therefore, high toughness and resilience are achieved simultaneously. Wearable, flexible strain/pressure sensors were successfully fabricated using the gels. Thanks to the high resilience of the gels, the sensors are highly reliable with unprecedentedly stable baseline and highly reproducible signal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据