4.7 Article

Donor engineered Deep-Blue emitters for tuning luminescence mechanism in Solution-Processed OLEDs

期刊

CHEMICAL ENGINEERING JOURNAL
卷 416, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.129185

关键词

Boron acceptor; Luminescence mechanism; Deep-blue emitter; Thermally activated delayed fluorescence; Non-doped organic light-emitting diodes

资金

  1. National Research Foundation of Korea [NRF2019R1A2C2002647, NRF2019R1A6A1A11044070]
  2. LG Display Co. Limited [Q1830291]
  3. National Research Foundation of Korea [4120200213669] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Three novel solution-processable A-?-2D-type deep-blue emitters, BCz, BBFCz, and BICz, were developed and studied for their luminescence mechanisms and performances in OLEDs. BICz showed the highest EQE and deep-blue emission performance, demonstrating exceptional performance in non-doped solution-processed deep-blue TADF-OLEDs.
Three novel solution-processable A-?-2D-type deep-blue emitters, namely BCz, BBFCz, and BICz, were developed to investigate their luminescence mechanisms and performances in organic light-emitting diodes (OLEDs). The emitters were uniquely designed by connecting two carbazole analogs as donors and a boron-fused unit as an electron acceptor to the benzene core; they exhibited aggregation-induced emission properties in the film states. Theoretical calculations and time-resolved photoluminescence (TRPL) experimental results indicate that the luminescence mechanism of the three emitters changed from fluorescence to thermally activated delayed fluorescence (TADF) as the donor unit was changed from carbazole to indenocarbazole. BCz was found to act like a fluorescent emitter, but BBFCz and BICz displayed TADF characteristics. Efficient reverse intersystem crossing (RISC) in BICz was confirmed by small ?EST, Ea, and kISC/kRISC ratio. Consequently, non-doped solution-processed TADF-OLEDs based on BICz as an emitter exhibited the highest external quantum efficiency (EQE) of 10.11%, with deep-blue commission International de l?Eclairage (CIE) color coordinates (0.16, 0.08). In contrast, BCz- and BBFCz-based devices showed relatively lower EQEs of 3.44% and 6.78%, respectively. The results showed that BICz as an emitter displayed exceptional performance in a non-doped solution-processed deep-blue TADF-OLED.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据